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The critical behavior of the contact process �CP� in heterogeneous periodic and weakly disordered environ-
ments is investigated using the supercritical series expansion and Monte Carlo �MC� simulations. Phase-
separation lines and critical exponents � �from series expansion� and � �from MC simulations� are calculated.
A general analytical expression for the locus of critical points is suggested for the weak-disorder limit and
confirmed by the series expansion analysis and the MC simulations. Our results for the critical exponents show
that the CP in heterogeneous environments remains in the directed percolation universality class, while for
environments with quenched disorder, the data are compatible with the scenario of continuously changing
critical exponents.
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Phase transitions in nonequilibrium statistical mechanics
have long been a field of interest, and universality classes
similar to those in equilibrium have been identified, with the
directed percolation �DP� class being one of the most promi-
nent ones. The contact process �CP� �1�, a susceptible-
infected-susceptible model for the spread of epidemics, be-
longs to this universality class and has become one of its
archetypical models. Recent years have seen much activity
sparked by the question of whether or not the DP class is
robust with respect to the introduction of quenched spatial
disorder. This has been seen as an important question from
both a fundamental and an experimental viewpoint, as it has
been suggested that the lack of experimental observations of
the DP critical behavior might be a result of the presence of
disorder in real-world systems �2�.

One of the foremost arguments that disorder changes the
critical behavior of the CP is that it violates the Harris crite-
rion �3,4� for all dimensions d�4. This criterion states that a
critical point is stable with respect to disorder if d���2
where �� is the critical exponent associated with the spatial
correlation length. So far, all studies carried out on the dis-
ordered CP have provided supporting evidence for a change
in universality with the introduction of disorder �5–12�.
However, it is not entirely clear how the critical exponents
change with disorder. In the strong-disorder limit, Hooy-
berghs et al. �10,11� have demonstrated that the CP changes
to the universality class of the random transverse-field Ising
model with activated scaling characterized by known scaling
exponents. Recent Monte Carlo �MC� simulations �12� sug-
gest that the activated scaling holds for an arbitrary degree of
disorder, meaning that an introduction of even weak disorder
forces the abrupt change of critical exponents from known
values for the homogeneous CP to those of the infinite-
randomness fixed point �IRFP�. This contradicts the findings
of other authors �8,9,11�, who showed, using both MC simu-
lations and density-matrix renormalization-group �RG�

analysis, that there is an intermediate-disorder regime with
continuously varying exponents. Unconventional critical be-
havior produced by quenched randomness is supported by a
field-theoretical analysis �7� in which only runaway solutions
in the RG equations were found.

The subject of this paper is to investigate the one-
dimensional �1D� CP in heterogeneous periodic systems
�e.g., a regular binary chain� and in systems with weak dis-
order �e.g., a binary chain with randomly placed species
characterized by parameters close in value�. In order to
achieve this goal, we employ the supercritical series expan-
sions �13,14� and MC simulations. We also suggest a simple
analytical expression for the locus of critical points in the
rate-space phase diagram which is in very good agreement
with series expansion and MC simulation results for both
heterogeneous periodic and weakly disordered systems. Our
main findings demonstrate that the CP in heterogeneous pe-
riodic systems belongs to the DP universality class with the
scaling exponents coinciding with those for the homoge-
neous case. For weakly disordered systems, we can state that
the introduction of disorder does not force the exponents to
change to the values of the IRFP but rather causes their con-
tinuous change with disorder strength.

The CP is usually defined on a hypercubic lattice of nodes
which can be either empty �susceptible� or occupied �in-
fected�. The infection occurs via contacts between Z nearest
nodes i and j with the rate �ij /Z. An infected node i can
recover to susceptible one with the rate �i. The time scale is
defined by setting all �ij =1 �for simplicity, there is no disor-
der in transmission rates� and, for concreteness, we consider
only binary systems with two types of nodes A and B, char-
acterized by the recovery rates �A and �B, respectively,
which are distributed according to a bimodal distribution in
the disordered system, ���i�= �1−q�	��i−�A�+q	��i−�B�,
with q being the concentration of nodes B.

In the homogeneous case �q=0�, the CP undergoes a non-
equilibrium phase transition between active and absorbing
states �15� if the recovery rates become greater than a critical
value, ���c�0.303 228 �14�. At criticality, the number of*Electronic address: cjn24@cam.ac.uk
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infected sites, Ninf�t�, scales with time as Ninf�t�
 t�, with
�=0.313 686 �16�. Close to criticality, the survival probabil-
ity P� and the time and space correlation lengths �� and ��,
respectively, also exhibit typical critical behavior, P�
�,
�� 
 ��−��, and ��
 ��−�� where =�c−� and the universal
exponents are ��0.2769 �14�, �� =1.733 825�25�, and
��=1.096 844�14� �16�.

In the heterogeneous and disordered systems, a similar
transition occurs �17�. Below, we address two questions: �i�
how heterogeneity and disorder influence the universal prop-
erties �namely, scaling exponents� at criticality and �ii� what
the locus of critical points is in the rate space of the CP in
such systems. We start with simple arguments about a pos-
sible way of evaluating an analytical expression for the criti-
cal line separating the active and absorbing states.

Let us consider a system of N �N→�� nodes character-
ized by random recovery rates �̃i=�i /�c. Following the for-
malism developed in Refs. �18–20�, the state of the system is
described by the state vector �P�t��=	
��P�
�� , t��
���,
whose time evolution is governed by the master equation

�t�P�t��= L̂ � P�t��. Here L̂ is the generator of the Markov pro-
cess that contains the transition rates between the different
microstates of the system, �
���. Once the system approaches
the active state, one of the nontrivial eigenvalues approaches
zero �and becomes exactly zero at the critical point in the
infinite system�. This means that the free term F��̃i� in the

characteristic equation �−1��Î− L̂�=0 also approaches zero at
criticality. Therefore, the locus of critical points in the space
of recovery rates can be written in a general form as a solu-
tion of the equation F�Mi��0 �for i=1,2 , . . . ,N�, where the
choice of the argument Mi=ln �̃i is motivated by a similar
choice for the RG analysis of both the CP and random
transverse-field Ising model �10,21�. The function F�Mi� is
invariant under the exchange of any two arguments and it
obeys the property F�0��0 for the homogeneous case. As
this function is analytic around the homogeneous critical
point at any finite N we can expand it in a Taylor series
around this point, F��0�	i

NMi+O�Mi
2��0, where we have

used the symmetry of the function F leading to all first de-
rivatives being equal at the stationary point. In fact, this ex-
pansion is equivalent to the expansion in the moments
un=E�Mn�, where E�·� denotes the expectation value. Leav-
ing only the first order in the above expansion we end up
with the following approximate equation for the locus of
critical points:

E�ln �̃� � 0, �1�

which is valid around the homogeneous critical point.
In order to support Eq. �1� for the locus of critical points

and also to investigate the critical behavior of the model,
we have used the perturbative supercritical series
expansion �13,14� for the survival probability P�. As usual,

L̂=�Ŵ+ V̂, is split into a part that destroys particles, �Ŵ,

and a part that creates particles, V̂, which in the systems
under consideration take the forms

�Ŵ = 	
i

�i�1 − ai
†�ai, �2�

V̂ = 	
i

1

2
�1 − ai�ai

†�ai−1
† ai−1 + ai+1

† ai+1� , �3�

where ai
† and ai are hard-core bosonic creation and annihila-

tion operators, respectively. The Laplace transform of �P�t��,
�P̃�s��= �s−�Ŵ− V̂�−1�P�0��, is then expanded in �i, yielding
the supercritical expansion for the survival probability

P���A ,�B�=lims→0�1−s�0 � P̃�s���, where �0� is the absorb-
ing state. For the analysis of this multivariable survival prob-
ability �cf. Ref. �22��, we employ a numerical scheme similar
to the nested Padé approximation �23,24�. In order to inves-
tigate the critical behavior, we consider the meromorphic
function ��A

ln P���A ,	� �with 	=�B−�A�, whose first pole
on the positive real axis is the critical point of the model, and
the residue at that pole is the critical exponent �. To improve
estimates of these poles from the finite series expansion, the
following multivariable rational-approximant scheme is
used: for a given expansion of P� in two variables �A and 	
up to an even �odd� order N, the Padé approximants �n ,n�
��n ,n+1�� in 	 of the coefficients of the terms �A

N−1−2n

��A
N−2n� in the series ��A

ln P���A ,	� are formed, followed
by the construction of the Padé approximant �N /2−1,N /2�
���N−1� /2 , �N−1� /2�� in �A. In order to estimate the stabil-
ity of the poles and residues found, several Padé approxi-
mants in �A �e.g., the approximants from �N /2−1,N /2�
down to �N /2−2,N /2−1� for even orders of N� were con-
structed and averaged over.

Using this scheme and starting from a single seed in the
series expansions up to order N=24, we calculated the locus
of critical points and the critical exponents � for three het-
erogeneous lattices AB, AAB, and AABB, and for disordered
systems whose recovery rates are drawn from the bimodal
distribution mentioned above �see Figs. 1 and 2�. Figure 1�a�
demonstrates that around the homogeneous critical point
��c ,�c�, the phase-separation lines between the active and
absorbing states are indeed very well described by Eq. �1�.
This is also confirmed by single-seed MC simulations based
on the random-sequential algorithm �25� �see Table I�—the
deviations of the MC results from predictions of Eq. �1� and
series expansion data for the critical line are less than 1%.
The critical values of �B for fixed values of �A were found
by analysis of the power-law behavior of Ninf�t� with aver-
aging over 106 MC runs. Figure 1�b� and Table I also show
that the critical exponents � and � practically do not change
from the values for the homogeneous CP, thus confirming
that the CP in heterogeneous lattices belongs to the same
universality class, DP, as that in the homogeneous one. The
systematic deviations of the calculated critical rates from the
theoretical prediction increases with the distance from the
homogeneous point, thus reflecting the restricted range of
applicability of Eq. �1�. Some irregular fluctuations in both
�B and � are probably due to poor convergence of the series
expansions.
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A similar series expansion analysis has been performed
for disordered systems with a configurational averaging of
the survival probability �P��. We were able to perform the
complete numerical averaging over all 22N−1 configurations
for N�12. The configurational averaging for series expan-
sions to higher orders, N=19, has been done approximately.

In the calculation of �P��=	n=0
N 	m=0

n �cnm��B
m�A

n−m, at each
term of order M �N, we only included realizations with
number i� iM of “impurity” sites B; e.g., we have chosen
iN−n=n+2 for series expansions up to order N=19, so that
for M =18 only realizations with up to three impurities con-
tributed to �P��. Dropping these disorder realizations from
the configurational average incurs less error the smaller the
impurity concentration q is. Assuming that the coefficients
cMmcM �with cM being the coefficient of the same order in
the homogeneous case�, all the realizations with i impurities
contribute a term � 2M−1

i
��1−q�2M−1−iqi to the configurational

average, �cMm�. Then, it can easily be shown that for
q=qmax=0.04 all terms with i� iN=2 are smaller than the
terms with i� iN. The validity of this approximation has been
confirmed by testing it against the exact results for N�12.

The results for fully and partially averaged survival prob-
abilities in disordered systems are shown in Fig. 2. The
phase-separation lines have been obtained for arbitrary im-
purity concentration for the fully averaged P� expanded up
to order N=12 and two of them for q=0.5 �squares and dot-
ted line� and q=0.3 �triangles and dot-dashed line� are dis-
played in Fig. 2�a�. High-order series expansions �N=19�
have been calculated only for low impurity concentrations,
q�qmax=0.04 �see the circles and solid line in Fig. 2�a��.
Again, the poles of ��A

ln P���A ,	� agree very well with the
theoretical prediction given by Eq. �1�.

The residues of the poles �exponents �� for different
points on the critical line are shown in Fig. 2�b� and in the
inset in Fig. 2�a�. The value of � reaches a minimum �min
located approximately around the homogeneous critical point
��c ,�c�, with �min being rather close to the value of the
homogeneous critical exponent �c, with ��min−�c� /�c
�0.5% for N=12 and 0.21% for N=19 �see the inset in Fig.
2�a��, thus confirming that the value of the exponent is much
more sensitive to N than the critical rates. Away from the
critical point, the value of �, first monotonically increases
and then starts to fluctuate due to a high sensitivity to the
value of �B, the estimates of which lose precision due to
poor convergence of the series in this range. The results for �
are in reasonable agreement with findings in Refs. �6,9,11�
where continuously varying critical exponents were seen in
MC simulations and density-matrix renormalization-group
studies of the random CP. Unfortunately, the errors in the

TABLE I. The critical values of �B obtained in MC simulations
�second column� and calculated according to Eq. �1� �third column�
together with the MC critical exponents �fourth column� for fixed
values of �A �first column� in the heterogeneous systems AB and
AAB.

�A �B �MC� �B �predicted� �

AB 0.2750 0.3344±0.0001 0.3343 0.313±0.006

0.2500 0.3681±0.0001 0.3678 0.313±0.003

0.2250 0.4094±0.0001 0.4087 0.313±0.003

AAB 0.2750 0.3689±0.0001 0.3687 0.313±0.002

0.2500 0.4475±0.0001 0.4461 0.314±0.001

0.2250 0.5546±0.0001 0.5507 0.314±0.001

FIG. 1. �Color online� Periodic 1D lattices AB ���, AAB ���,
and AABB ���: �a� critical points obtained by series expansions in
comparison with analytical prediction for the critical line
�c= ��A

1−q�B
q�, q=1/2 �—� and q=1/3 �- - -� for �c=0.303 228

�14�; �b� critical exponent � in comparison with series expansion
value �=0.2769 �- - -� �14� for the homogeneous case.

FIG. 2. �Color online� The phase diagram �a� and scaling expo-
nent ���A�, �b� and inset of �a�, for disordered lattices with various
degrees of disorder: q=0.04 ���, 0.3 ���, and 0.5 ��� obtained by
series expansion. The lines represent the theoretical prediction ac-
cording to Eq. �1�, �c= ��A

1−q�B
q�, for q=0.04 �—�, 0.3 �·· - ··�, and

0.5 �···� with �c=0.303 228 �14�. The triangle in �a� marks the re-
gion for which the MC simulations shown in Fig. 3 have been run.
The dashed lines in �b� and the inset of �a� show the value of � for
the homogeneous case, �c=0.2769 �- - -� �14�. The arrow in �b�
marks the homogeneous critical point.
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exponents that are shown in Fig. 2�b� and the inset of Fig.
2�a� are at least of the order of ����c�−�c� and the mono-
tonic growth of the exponents found in the series expansions
can be questioned. However, our results are certainly not
consistent with the scenario presented in �12� according to
which the weakly disordered CP belongs to the same univer-
sality class as random transverse-field Ising model with
�=0.381 97.

The results for the disorder case have been supported by
MC simulations �see Fig. 3�. Due to the long relaxation times
of the disordered CP �cf. Refs. �5,9,12�� we have focused
only on one point in the rate space with q=0.5 and
�A=0.25. The results of the simulations up to 107 time steps
are shown in Fig. 3 for three values of �B around criticality
in double-logarithmic scales of Ninf vs t as well as Ninf vs ln t
�see the inset in Fig. 3� to allow for both conventional and
activated scaling �12�. The MC critical value of �B�0.368
�with the error being less than 0.005� obtained by conven-
tional double-logarithmic scaling analysis is certainly very
close to the series expansion value ��B�0.369 for N=12;
see the triangle in Fig. 2�. The value of the dynamical expo-
nent at this point is found to be ��0.388 which is in favour
of the scenario suggesting scaling exponents varying con-
tinuously with disorder.

In conclusion, we have investigated the CP in heteroge-
neous and disordered 1D systems in the limit of weak disor-
der by means of the series expansions and MC simulations.
We have demonstrated that the CP in heterogeneous 1D lat-
tices stays in the DP universality class. For disordered envi-
ronment, our results suggest that disorder continuously
changes the scaling exponents. A simple analytical formula
for the phase-separation line has been suggested and proved
�numerically� to be valid in the weak-disorder limit. Prelimi-
nary investigations of the CP in 2D heterogeneous lattices
also support the analytical predictions for the phase-
separation line.
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FIG. 3. �Color online� Number of infected sites vs time obtained
by MC simulations of the disordered CP with q=0.5 and
�A=0.25, averaged over 1500 runs and at least 30 disorder realiza-
tions. The main figure is in double-logarithmic scale according to
the conventional scaling while the inset demonstrates the same data
in the activated scaling picture �12�. The curves from top to bottom
correspond to 0.3628 ���, 0.3680 ���, and 0.3728 ���.
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